Linear metric spaces and analytic sets

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero Sets for Spaces of Analytic Functions

We show that under mild conditions, a Gaussian analytic function F that a.s. does not belong to a given weighted Bergman space or Bargmann–Fock space has the property that a.s. no non-zero function in that space vanishes where F does. This establishes a conjecture of Shapiro (1979) on Bergman spaces and allows us to resolve a question of Zhu (1993) on Bargmann–Fock spaces. We also give a simila...

متن کامل

Bounded analytic sets in Banach spaces

© Annales de l’institut Fourier, 1986, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...

متن کامل

Linear openness of multifunctions in metric spaces

Here, S stands for the closure of the set S. Various openness and almost openness notions are build on the inclusions (1.1) and (1.2). Every openness property implies the corresponding almost openness property, for S⊆ S. It is expected for the converse implication to be true in case that the multifunction F has a closed graph. In this regard, we recall the result in [12, Chapter 6, Lemma 36, pa...

متن کامل

A Metric Characterization of Normed Linear Spaces

Let X be a linear space over a field K = R or C, equipped with a metric ρ. It is proved that ρ is induced by a norm provided it is translation invariant, real scalar “separately” continuous, such that every 1-dimensional subspace of X is isometric to K in its natural metric, and (in the complex case) ρ(x, y) = ρ(ix, iy) for any x, y ∈ X.

متن کامل

On the Farthest Points in Convex Metric Spaces and Linear Metric Spaces

We prove some results on the farthest points in convex metric spaces and in linear metric spaces. The continuity of the farthest point map and characterization of strictly convex linear metric spaces in terms of farthest points are also discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 1994

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s001309150000612x